George Karystianis; Therese Sheppard; William G Dixon; Goran Nenadic
B M C Medical Informatics and Decision Making. BioMed Central Ltd.; 2016
Methods We introduce a prescription model that provides minimum and maximum values for dose number, frequency and interval, allowing modelling variability and flexibility within a drug prescription. We developed a text mining system that relies on rules to extract such structured information from prescription free-text dosage instructions. The system was applied to medication prescriptions from an anonymised primary care electronic record database (Clinical Practice Research Datalink, CPRD). Results We have evaluated our approach on a test set of 220 CPRD prescription free-text directions. The system achieved an overall accuracy of 91 % at the prescription level, with 97 % accuracy across the attribute levels. We then further analysed over 56,000 most common free text prescriptions from CPRD records and found that 1 in 4 has inherent variability, i.e. a choice in taking medication specified by different minimum and maximum doses, duration or frequency. Conclusions Our approach provides an accurate, automated way of coding prescription free text information, including information about flexibility and variability within a prescription. The method allows the researcher to decide how best to prepare the prescription data for drug efficacy and safety analyses in any given setting, and test various scenarios and their impact.